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Demand fluctuation, known as demand uncertainty, usually occurs under several circumstances not only in 
ordinary logistics firm but also humanitarian logistics. An objective of this study is to tackle the facility locations and 
allocations under demand uncertainty in a case study for a relief distribution. The demand uncertainty is handled by 
robust counterpart in Robust Optimization (RO) called an ellipsoidal uncertainty set, which is a novel approach that 
has never been fully applied so far solving on a multi-facility location network. Herein, we analyze and compare 
three distinct network designs to find the most cost efficient and robust network. The best model is selected through 
continuous improvement by routing optimization, leading to delivery cost reduction.  
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1. INTRODUCTION 
 

Humanitarian logistics have been indicated as significant 
issues in several terms of natural disaster operations and 
management. Recently, researchers have extensively worked 
on the most appropriate location of medical centers and shelters 
to provide the evacuees quick access. Lin et al.2) found that 
prioritizing items for delivery and an extensive time period are 
important factors in humanitarian logistics. Accordingly, to 
improve logistics efficiency, they proposed the location of 
temporary depots to be around the disaster-affected area, along 
with the required vehicles and resources. In contrast, our study 
intends to design the depot locations by considering the cost 
efficiency and whether demand is met. Real situations usually 
involve uncertainty, that is, parameter fluctuation. 
Holguín-Veras3) has inferred from the Tohoku experience that, 
in order to improve future response efforts, disaster planners 
should design worst case scenarios from small disasters to 
massive destruction. Therefore, this study also stresses the 
importance of such improvements in case the demand becomes 
uncertain. Furthermore, we aim to improve the network by 
considering the practical level of vehicle routing problems after 
obtaining the locations at a  strategic level are obtained under 
demand uncertainty, setting up a two-stage facility location 
network with a route planning problem. Baron and Milner4) 
have carried on the similar works on facility location by using 
the Robust Optimization approach. The potential of box 
uncertainty set and ellipsoidal uncertainty set was investigated 

to solve facility location problems by varying the size both box 
and ellipsoid. They found that the box uncertainty model 
performs poorly with respect to balancing robustness with the 
model objective function. However, their model only 
considered a single layer of facility location. On the contrary, 
this study focuses on the fully multi-hierarchy facility location 
network, which is more complicated but more realistic. Min et 
al.5) found that there is a difference between location with 
routing and classical location: while the first one serves 
customers through tours, the second one serves the customers 
through radial trips.  

In such a background, this study attempts to contribute to the 
previous research by considering the worst case scenarios for 
multi-facility location problems under demand uncertainty. 
Accordingly, the main objective of the study is to tackle the 
facility location and allocation problem with demand 
uncertainty by using an ellipsoidal uncertainty set approach, 
which has never been fully applied so far. This allows to solve 
the multi-hierarchy facility location network problem, and 
subsequently building vehicle routing from the allocations 
derived from location problem with demand uncertainty. The 
objectives of the study can be summarized as follows: 

1. To apply ellipsoidal uncertainty set, a novel approach to 
solve fully multi-hierarchy facility location network 
problems. 

2. To manage the facility location problem in the context of 
both deterministic and uncertain demand, and 
subsequently compare solutions’ robustness of five 
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demand scenario assumptions. 
3. To evaluate the total delivery cost efficiency on different 

networks. Accordingly, we analyze the model on three 
networks differing in structures and truck sizes. 

4. To select the best network and improve it by making 
practical uses of routing.  

The expected results from the facility location model with 
routing are defined as follows: 

1. To search the appropriate locations of depots for relief 
items’ distribution in Miyagi prefectures. 

2. To allocate the transportation link flow at each network 
configuration. 

3. To minimize the total delivery cost which includes 
transportation cost, facility opening cost, and 
transshipment cost. 

4. To seek a practical routing to reduce the total delivery 
cost.   

In upcoming sections, we state the problem, and present 
model structure and assumptions, as well as results and 
conclusions. 

 
 

2. PROBLEM STATEMENT 
 
 The 2011 Tohoku’ Earthquake in Japan, represents our case 
study. We focus on Miyagi prefecture, the most affected area 
with a huge number of evacuees. As it is widely known, the 
2011 Tohoku earthquake and tsunami had enormous impacts 
both as a humanitarian crisis, while also leaving economic 
aftermath. Moreover, the situation generated the several costs 
during and after disaster like reconstruction cost, rescue cost, 
logistics cost, etc. The logistics cost is quantified by Nagurney 
et al.6) as approximately 80 percent of overall operation 
responding costs. Therefore, the cost efficiency should be one 
of the many aspects to be considered. Because of this, this 
study would like to examine the logistics cost efficiency. An 
improved supply distribution cost can reduce the expenditure 
for the whole operation cost during the amelioration period. A 
bottle of water is considered to be a requisite item for 
preliminary succor. Although total delivery cost minimization 
is not the only aspect to be considered in humanitarian logistics, 
it is a good criterion to compare the results for distinct network 
systems.   
 In fact, post disaster circumstances usually involve 
fluctuations in the number of evacuees and imprecise 
predictions. This study aims to handle the facility location 
problems or mixed integer problems under demand uncertainty. 
The methodology to deal with this demand fluctuation is 

Robust Optimization. Snyder7) surveyed the facility location 
under uncertainty. The author classified several papers by their 
approach to uncertainty. Those are stochastic location problems 
and robust location problems. However, there is no 
multi-facility location problem solved through robust 
counterpart. Accordingly, we attempt to address the problem by 
employing a robust counterpart of the ellipsoidal uncertainty set, 
which is a novel approach that has never been fully applied so 
far to solve on multi-facility location problems. 

In addition, according to the definition of solitary facility 
location problem, the classical location serves customers 
through radial trips. They do not serve reasonably through tours 
as in more realistic operational circumstances. Therefore, the 
route building is conducted to improve the distribution network 
onward.    
 
 
3. MODEL  STRUCTURE  AND  DATA 

ASSUMPTIONS 
 
3.1. Model structure 
 The problem is designed for three different network 
structures. We categorized the three networks based on network 
configurations and dispatched truck sizes. The first network 
element consists of the locations with serviceable supports 
(suppliers). The second network element is the central relief 
depot in case of double hierarchies. The third element is 
constituted by the relief depots for double hierarchy and the 
relief depot in case of single hierarchy. The latter two network 
locations are unknown and need to be defined in the most 
efficient way. Finally, areas subject to a natural disaster are 
called shelters, which can be defined known locations as 
demands. The transportation truck sizes are 10-ton trucks and 
4-ton trucks. Networks specification is described below. 
 
（1）Network 1 
 This network is determined by three network elements: 
suppliers, relief depots and shelter demands. The relief depot 
candidate sites are located inside the affected areas. The relief 
items are dispatched from suppliers to relief depots by using 

 
 
 
 
 

 
Fig.1 The single-hierarchy network framework and 10-4-ton truck 

delivery 
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10-ton trucks. Then, 4-ton trucks are used for portage of the 
relief items from relief depots to shelter demands. 
（2）Network 2 
 This network is determined by four network elements: 
suppliers, central relief depots, relief depots and shelter 
demands. The central relief depot candidates are supposed to be 
located inside the affected areas. The 10-ton trucks are meant to 
transport relief items from suppliers to central relief depots and 
from central relief depots to relief depots. Then, relief items are 
carried from relief depots to shelter demands by using 4-ton 
trucks.   

（3）Network 3 
 This network is a duplicate structure of network 2 in terms of 
the number of network configurations and their locations. 
However, there is a difference in terms of truck size, as here the 
transportation from central relief depots to relief depots is 
assigned to 4-ton trucks instead of 10-ton trucks. 

3.2. Shelter locations and number of evacuees 
 This study used data published in the Miyagi Prefectural 
Government Report8). The number of evacuees (Figure 4) is 
considered to estimate the amount of relief items demanded 
and their locations. We classified locations into zones 
distinguished by different colors in Figure 4. The data indicated 
that the number of evacuees was very high in flat areas and the 
capital city. The highest demand, approximately 70,000, was 
recorded in Sendai. Therefore, we divided Sendai into five 
demand sites. Although the number of victims in Ishinomaki 
was also high, the demand site was not subdivided because the 
flat area is quite small. Hence there is no significant impact in 

terms of distance. Further, there were relatively less evacuees 
on the top and bottom sites located near Sendai city. The lowest 
number of evacuees (5 evacuees) was recorded in the 
Marumori town where connects under Sendai. Exempt these 
mentions before a number of evacuees are quite small when 
comparing with Sendai and Ishinomaki. These amounts are 
some hundreds of people for each shelter.   

The study not only examines a single demand model but 
also multi-demand scenarios are examined. These demand 
scenarios are used in order to analyze the sensitivity of three 
different network structures. The demand is determined for five 
scenarios which deviate from the historical case in both sides 
optimistic and pessimistic. These five demand scenarios are 
separated as less than historical demand by 20 percent (S1) and 
10 percent (S2), historical demand (S3), and more than actual 
demand by 10 percent (S3) and 20 percent (S4) respectively. 

  
3.3. Supplier locations and facility locations 
 This section specifies the network element locations. These 
locations are identified by latitude and longitude coordinates. 
Our study assumes that locations are easily accessible by 
expressway or main road. Absent significant distance, locations 
might also be a group of sites. First, the locations of suppliers 
are determined. The Miyagi Prefectural Government Report8) 
shows that in Japan there are 29 sites available for serving the 
affected areas with goods after the disaster. However, we 
grouped these 29 sites into nine sites of suppliers by using the 
adjacent zone ideal. The locations of supplier locations are 
illustrated in Figure 5(a). 

Then, the locations of candidate central depots and candidate 
depot locations are defined. The assumption is that the central 
depots are inside the affected areas or in Miyagi prefecture. 
These are assigned to cover the areas of the next layer or depots. 
The central depots should respond to the next layer necessities 
by considering the zoning characteristics. The locations of 
candidate central depots are illustrated in Figure 5(b). Then, the 
candidate depot locations are indicated in 11 places. These 
locations are specified by clustering zoning areas and demand 
size in Figure 5(c). As mentioned in the previous section, the 
different colors of depot candidates are supposed to correspond 
to different demand zones. 
 
3.4. The total delivery cost 
 We assume that total delivery costs can be separated into 
three parts: travel cost, facility opening cost and transshipment 
cost. Firstly, the travel cost is measured by the fuel 
consumption rate based on 4-ton trucks and 10-ton trucks. 
Moreover, the travel cost also includes driver’s salary under the 

 
 
 
 

 
 
Fig.2 The two-hierarchy network framework and 10-10-4-ton truck 

delivery 
 

 
 
 
 
 

 
Fig.3 The two hierarchies network framework and 10-4-4-ton truck 

delivery 
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working time limitation, purchase truck cost per day and 
vehicle insurance per day. Secondly, the facility opening cost is 
determined. 

This cost is measured as the average price of building rental 
for firm, and it differs depending on the zone. Finally, the 
transshipment cost is set about three times the value of an 
ordinary business firm (15,000 yen per ton per day) for loading 
and unloading goods.  

3.5. The travel cost 
 This cost changes according to the distance and energy 
consumption rate. At the beginning, the energy consumption 
rate for 4-ton trucks and 10-ton trucks was set to 7.69 and 11.54 
yen per kilometer respectively. The travel cost is computed 
below and considers travel cost from length, driver salary, 
purchase truck cost and insurance cost. The driver cost is 
defined per hour of driving with an upper limit of eight hours 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Supplier locations              (b) Central depot locations              (c) Depot locations 

Fig.5 The supplier and facility locations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4 The amount of demand in each shelter and zone clustering (in the map) 
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per day. Purchase truck cost and vehicle insurance cost are 
divided into one day units.   
a. Large truck size (10-ton) 
 *driver salary = 1,250 yen per hour  
 *purchase truck cost = 2,063 yen per day 
 *vehicle insurance cost = 1,032 yen per day 
b. Small truck size (4-ton) 
 *driver salary = 1,000 yen per hour  
 *purchase truck cost = 1,375 yen per day 
 *vehicle insurance cost = 688 yen per day 
 
3.6. Facility opening cost 

The facility opening cost or fixed cost includes construction 
cost, electricity cost and water supply cost as well as the rental 
building cost based on websites in @Nifty10). This cost is 
measured as the average price of a storage building rental in 
each area of central depot candidates. This implies that the 
average price of building rental is a function of the storage size. 
However, several severe destructions including road disruptions 
in the affected areas after the disaster need to be taken into 
account. Therefore, it becomes very difficult to determine the 
suitable locations for candidate central depots and depots. 
Moreover, after the disaster there is also a lack of necessary 
resources like human resources, electricity supplies, water 
supplies, fuel energy and particularly land areas. Therefore, the 
opening cost for the facility location is set 10% higher than the 
original.  
 
3.7. Transshipment cost 

Transshipment cost is assumed to be approximately 15,000 
yen per ton per day. This cost is three times the typical business 
firm cost for loading or unloading of goods at facility sites. This 
cost will generate when the set of facility sites is selected to 
operate. This cost includes salary, bonus, social insurance and 
pension saving of human resources. This value is obtained from 
the firm Logistic Behavior Survey (PWRI)9). 
 
 
4. MATHEMATICAL FORMULATION 
 
Indices ܫ: Set of the supplier nodes (݅) (݅=1,2,3…ܫ) ܬ: Set of the candidate central depots (݆) (݆=1,2,3…ܬ) ܭ: Set of the candidate depots (݇  (ܮ…1,2,3=݈) (݈) Set of the demand nodes or shelters :ܮ (ܭ…1,2,3=݇) (
TS: Set of the truck size (s) 
Notations ݔଵ , ଶݔ , ଷݔ  : The flow of items from ݅ and ݆, ݆ and 

݇, ݇ and ݈  ܥଵ : The capacity at the candidate central 
depots ݆ (j=1,2,3…ܬ) ܥଶ : The capacity at the candidate depots ݇ 
 (ܭ…1,2,3=݇)

Sets of parameters ܵ : The amount of items at the supply ݅  ܦ : The demand at the affected area ݈  ܿଵ , ܿଶ , ܿଷ  : The travel cost between ݅ and ݆, ݆ and ݇, ݇ and ݈ ݂ଵ, ݂ଶ : The opening depot cost at ݆ and ݇ ݐ ܿଵ, ଵݒ ݇ ଶ : The transshipment cost at ݆ andܿݐ , ଶݒ , ଷݒ  : The capacity of truck between ݅ and ݆, ݆ 
and ݇, ݇ and ݈ ݓଵ , ଶݓ , ଷݓ  : The maximum working time of drivers 
between ݅ and ݆, ݆ and ݇, ݇ and ݈ ݀ଵ , ݀ଶ , ݀ଷ  : The distance between ݅ and ݆, ݆ and ݇, ݇ and ݈ ݐଵ , ଶݐ , ଷݐ  : The travel time between ݅ and ݆, ݆ and ݇, ݇ and ݈ ܧ௦ : The energy consumption rate of truck sizes ܵܦ௦ : The driver salary of truck size s  ௦ܶ : The truck cost of truck size s 

 
4.1. Objective function 
 
 Classical location problem  

݉݅݊ ቐ  ܿଵ ଵூݔ
ୀଵ


ୀଵ ܻ +   ܿଶ ଶݔ

ୀଵ ܻܼ
ୀଵ

+   ܿଷ ଷݔ
ୀଵ ܼ +  ݂ଵ ܻ +  ݂ଶܼ

ୀଵ


ୀଵ


ୀଵ
+  ݐ ܿଵ ܻ

ୀଵ +  ଶܼܿݐ
ୀଵ ቑ 

(1) 

When 
 ܿଵ = ൫ܧ௦݀ଵ ൯ + ൫ܵܦ௦ݐଵ ൯ + ௦ܶ (2) 
 ܿଶ = ൫ܧ௦ ݀ଶ ൯ + ൫ܵܦ௦ݐଶ ൯ + ௦ܶ (3) 
 ܿଷ = ሺܧ௦݀ଷ ሻ + ሺܵܦ௦ݐଷ ሻ + ௦ܶ (4) 
Decision variables ܻ= ൜1, ݂݅ ݈ܽݎݐ݊݁ܿ ݏݐ݁݀ ݏ݅ ܽ ݀݁ݐ݈ܽܿ ,0݆ ݐ ݁ݏ݅ݓݎℎ݁ݐ ߝ ݆ ݎ݂ ܬ (5)

ܼ = ൜1, ݂݅ ݏݐ݁݀ ݏ݅ ܽ ݀݁ݐ݈ܽܿ ,0݇ ݐ ݁ݏ݅ݓݎℎ݁ݐ ߝ ݇ ݎ݂    (6) ܭ

Subject to  
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  ଵݔ ≤ ܵ
ୀଵ  (7) 

  ଵݔ ≥  ଶݔ
ୀଵ ܻூ

ୀଵ  (8) 

  ଶݔ ≤ ଵܥ ܻ
ୀଵ  (9) 

  ଶݔ ≤  ଷݔ
ୀଵ ܼ

ୀଵ  (10) 

  ଷݔ ≤ ଶܼܥ
ୀଵ  (11) 

  ଷݔ ≥ ܦ
ୀଵ  (12) 

  ଵݔ ≤ ଵݒ
ୀଵ  

 
(13) 

  ଶݔ ≤ ଶݒ
ୀଵ  

 
(14) 

  ଷݔ ≤ ଷݒ
ୀଵ  

 
(15) 

  ଵݐ ≤ ଵݓ
ୀଵ  

 
(16) 

  ଶݐ ≤ ଶݓ
ୀଵ  

 
(17) 

  ଷݐ ≤ ଷݓ
ୀଵ  

 
(18) 
 

ଵݔ  , ଶݔ , ଷݔ ≥ 0 (19) 
 Y୨,  Z୩ ∈ ሼ0,1ሽ for all j and k (20) 
 
 The objective function (1) minimizes the total delivery cost 
as the sum of transportation cost, facility cost and 
transshipment cost. Formulation (2), (3) and (4) represent travel 
cost parameter functions including travel cost and operation 
cost. ܻ and ܼ in (5) and (6) are decision variables to locate 
the central depots ݆ and depots ݇. Note that (1) is completely 
performed for network 2 and network 3 through both decision 
variables ܻ and ܼ  in (5) and (6), respectively. However, 
there are no central depots ݆ in network 1, therefore the links 

from suppliers ݅ to, respectively, depots ݇ and to demand ݈, 
are the same. Constraint (7) guarantees that total flows from 
suppliers ݅ to central depots ݆ are not higher than the amount 
of serving goods at suppliers ݅. Constraint (8) ensures that the 
sum of link flows from ݅ to ݆ does not exceed the total 
availability of goods at opening central depots ݆. Constraint (9) 
limits the total amount of link flows from ݆ to ݇  to the 
capacity of opening central depots ݆. Constraint (10) limits the 
sum of link flows from ݆ to ݇ to the availability of goods at 
depots ݇. Constraint (11) ensures that the total amount of link 
flows from depots ݇ to demand ݈ must not be higher than 
the capacity of next network configuration or depots  ݇ . 
Constraint (12) confirms that the total amount of goods from 
depots ݇ satisfies demand ݈. Constraints (13), (14), and (15) 
prohibit that the amount of a commodity exceeds the 
maximum truck volume. Constraints (16), (17), and (18) limit 
the total amount of driving hours to the maximum working 
time. Constraint (19) confirms that each link flow from site ݅ 
to ݆, ݆ to ݇, and ݇ to ݈ needs to define some amount of 
goods. Finally, constraint (20) specifies that both decision 
variables ܻ and ܼ are binary variables, taking value 1 if the 
facility is located at sites ݆ and ݇, and 0 otherwise. 
 
Decision variables ܴ

= ൝1,  ݅ ݅ ݈ ݎ݁ݐℎ݈݁ݏ ݂ ݀ ݏ ݉ݎ݂  ݀݁ݎ݁ݒ݈݅݁ ݏݐ݁݀ ݇ ݕܾ ݇ܿݑݎݐ ,0ݏ ݁ݏ݅ݓݎℎ݁ݐ ,ܭ ߝ ݇ ݎ݂      ݈ ߝ ܮ (21)

Location problem with routing 

݉݅݊ ቐ  ܿଵ ଵூݔ
ୀଵ


ୀଵ ܻ +   ܿଶ ଶݔ

ୀଵ ܻܼ
ୀଵ

+   ܿଷ ଷݔ
ୀଵ ܼܴ +  ݂ଵ ܻ +  ݂ଶܼ

ୀଵ


ୀଵ


ୀଵ
+  ݐ ܿଵ ܻ

ୀଵ +  ଶܼܿݐ
ୀଵ ቑ 

(22)

Additionally subject to 

 ܴ ≥ 1
ୀଵ  (23)

 ଶݔ ܼ
ୀଵ  ܴ

ୀଵ ≤ ଷݒ  (24)

 ܴ
ୀଵ −  ܴ

ୀଵ = 0 (25)
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 This part refers to the second stage of this study that is 
improvement through routing. The variables in the location 
problem, namely locations and allocations, were determined in 
the primary stage. In other words, the decision ܻ , ܼ  and 
variables ݔଵ , ଶݔ , ଷݔ in (22) are derived from the optimization 
in (1) under demand uncertainty (26, 27, and 28). Then, the 
decision ܻ , ܼ and variables ݔଵ , ଶݔ , ଷݔ  in (27) turn into 
parameters to plug in (22). Subsequently, the variable ܴ in 
(21) is added to generate the tours at the third hierarchy. The 
objective function (22) minimizes the total delivery cost of 
location with routing problem. Constraint (23) ensures that the 
delivery route is linked to the opening depots. Constraint (24) 
fixes the capacity of trucks at depots. Constraint (25) requires 
that the trucks ought to leave every point that they visited.      
 
4.2. Mathematical with Robust Formulation by using 

Robust Counterpart  
 This part of the study focuses on the multi-source and 
multi-layer aspects of the facility location problem with 
uncertainty demand by considering the ellipsoidal uncertainty 
set within the robust optimization approach. Ben-Tal and 
Nemirovski15) considered the ellipsoidal uncertainty set with 
linear programming. Kouvelis and Yu16) discussed the robust 
discrete optimization and its applications. They proposed an 
approach to find a solution that minimizes the worst case 
performance under a set of scenarios for the data. Bertsimas 
and Brown17) proposed a methodology to construct uncertainty 
sets for robust linear optimization based on decision maker risk 
preferences. Josef18) gave an overview of the state-of-the-art 
and recent advances in mixed integer optimization to solve 
planning and design problems in industry processes. Stochastic 
programming for continuous LP problems is now included in 
most optimization packages, and there is encouraging progress 
in the fields of stochastic MILP and robust MILP. Ben-Tal, 
Bertsimas and Brown19) proposed a soft robust model for 
optimization under ambiguity. 

Ellipsoidal: ܷ =   ቀ ሺି ഥሻఋ×ሺିഥሻቁଶ ≤ ଶ  (26)ߩ 

݉݅݊ ቐ  ܿଵ ଵூݔ̅
ୀଵ


ୀଵ തܻ +   ܿଶ ଶݔ̅

ୀଵ തܻܼ̅
ୀଵ

+   ܿଷ ଷݔ̅
ୀଵ ܼ̅ +  ݂ଵ തܻ +  ݂ଶܼ̅

ୀଵ


ୀଵ


ୀଵ
+  ݐ ܿଵ തܻ

ୀଵ +  ଶܼ̅ܿݐ
ୀଵ ቑ 

(27) 

 ଷݔ̅ ≥ തതതܦ
ୀଵ  

 
(28)

 This study focuses on the demand uncertainty parameter, 
which deviates from the historical value of the uncertain 
parameters. Demand uncertainty is expanded in the region of 
the ellipsoidal uncertainty set. The demand parameter in (26) is ܦ while (ܦഥ) is the demand deviating from historical values. 
Given the uncertain demand ܦഥ ߳ ܴௗ, we consider the sets 
around the historical values ܦ ߳ ܴௗ, where ߜ is a scaling 
parameter for the ellipsoid radius and ߩଶ is the constraint. The 
size of the ellipsoid can increase by the ellipsoid radius ߜ or 
the constraint ߩଶ. Increasing the size of the ellipsoid will make 
the model more robust against (more) uncertainty, however at 
the cost of a worse solution. Moreover, if the size of the 
ellipsoid becomes too large then the model might become 
infeasible. In accordance with the solution feasibility, we set ߜ 
equal to 1/150 – 1 and use ߩଶ equal to 1 to restrict the region 
around historical demand. We determine that the interval range 
of demand (ܦ − ഥܦ ) is equivalent to the maximum truck 
capacity which is still in the feasible solution area. Then, the 
variables from the deterministic demand model in (1) are used 
in (27) to represent the uncertain demand model. These 
variables give the solutions in the worst case under the 
constraint (28) determines as ellipsoidal uncertainty set. 

The robust counterpart in Robust Optimization (RO) is 
provided by AIMMS software, which has been more recently 
applied to handle parameter uncertainty. RO is designed to 
meet some major challenges associated with 
uncertainty-affected optimization problems; to operate under 
lack of full information on the nature of uncertainty, to model 
the problem in a form that can be solved efficiently, and to 
provide guarantees about the performance of the solutions. RO 
is an uncertainty modeling approach suitable for a situation 
where the uncertainty ranges are known while the distribution 
not necessarily is. Typically, some inputs take an uncertain 
value anywhere between fixed minimum and maximum. This 
demand uncertainty can present how the worst case is when we 
consider the fluctuation of the demand. RO is very suitable for 
many problems as only simple inputs about data uncertainty 
are required as there are no scenarios or distribution functions 
need to be defined. The advantage of RO models is that they 
grow only slightly when uncertainty is added. As a result, the 
model can be solved efficiently.  

The objective function containing the integer variables, is 
called Mixed Integer Program (MIP). In addition, one 
constraint is quadratic, thus the model becomes a Mixed 
Integer Program Quadratically-Constrained Program (MIQCP). 
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Whenever the uncertainty set of a mixed-integer robust 
problem is an ellipsoidal, the robust counterpart can be 
reformulated as a mixed-integer second-order cone program 
(MISOCP) which is a special case of MIQCP. This study uses 
a well-known powerful solver namely Gurobi (GUROBI 
website)20), available for MISOCP. The algorithm used by 
GUROBI solvers is parallel SOCP barrier algorithm. 
 
 
5. COMPUTATINAL RESULTS 
 
 Results illustrate outcomes for both deterministic and 
uncertain model. The anticipation results for both 
circumstances are the location of the facility and the total 
delivery cost of the three different network structures. As 
mentioned before, each network structure includes five demand 
scenarios, corresponding to five expectation results for each. 
We compare the total delivery cost of the three networks and 
indicate the best network structure by cost performance and 
network robustness. Then, we present the sensitivity analysis 
and compare the robustness of the three networks. Furthermore, 
we choose the best among the three networks to establish the 
vehicle routing designs.  
 The locations of opened facility for each network of both 
deterministic demand and uncertain demand are indicated in 
Table 1. From the results, we found that the network 
configurations and their systems have an impact on the total 
delivery cost on both deterministic demand and uncertain 
demand (see Figure 6). It can be seen that network 2 and 
network 3, which are defined for two layers of facility, are 
obviously preferable in term of cost performance when 
compared to network 1, which is single layer. The average total 
delivery costs of the three networks are, respectively 

35,695,605 yen, 28,639,608 yen, and 29,552,784 yen in case of 
deterministic demand and 39,265,851 yen, 32,226,419 yen, 
and 33,054,993 yen in the uncertain demand case. Network 2 
and network 3 lessened by 21.94 percent and 18.83 percent 
respectively in the deterministic case. Similarly, they also 
lessened by 19.69 percent and 17.18 percent in the uncertain 
case. The total delivery cost is mostly generated by the travel 
cost (approximately more than 90 percent), and its rapid 
increase is due to the amount of transportation. 
 When comparing network 2 and network 3, all demand 
scenarios in network 2 can be reduced by 1.19 percent, 2.79 
percent, 6.06 percent, 2.49 percent, and 1.71 percent, 
respectively. These results indicate that not only network 
configurations, but also truck size operations have significant 
influence on the total delivery cost function. Using 10-ton 
trucks to deliver from suppliers to central depots and from 
central depots to depots has a significant positive effect on cost 
reduction. Therefore, we can infer that network 2 meets with 
the criteria of cost performance.    
 Figure 7 illustrates the sensitivity analysis on the objective 
function for each network. In the range of sensitivity values 
comparison, network 1 presents a wider range and higher 
sensitivity than the others, meaning that network 1 is less robust 
than the other networks. The range scale of network 1 was 
approximately 0.1 to 9 million yen, while there is 
approximately 3 to 5 million yen of sensitivity for network 2 
and network 3. In particular, when comparing the average 
sensitivity, network 1 is at 4,708,289 and 4,943,401 in term of 
deterministic and uncertain demand, while the corresponding 
values for network 2 are only 3,001,504 and 2,495,848. 
Moreover, the average sensitivity of network 2 is also lower 
than network 3, which is 3,325,625 and 2,552,370 for 
deterministic and uncertain demand, respectively. These results 

 
Table 1 The opened facility locations for each network of both deterministic demand (left) and uncertainty demand (right) 

 
 

 
 
 
 
 
 

 
 
 
 

 

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
Kesennuma 1 1 1 1 1 1 1 1 1 1
Tome 1 1 1 1 1 1 1 1 1 1
Sendai(Kumagane)
Yamamoto

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
Tome and Kurihara 1 1 1 1 1 1 1 1 1
Kesennuma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
North Ishinomaki 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
South Ishinomaki 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
South East Ishinomaki 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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North West Sendai
North East Sendai
Central Sendai
South East Sendai
South Sendai
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indicate that network 2 is the most robust network among the 
three networks. In addition, the average sensitivity of uncertain 
demand for both network 2 and network 3 is more robust than 

in the deterministic case, showing the advantage of using RO.   
 In the comparison of deterministic demand and uncertain 
demand, network 2 and network 3 were similar that by using 
robust optimization to handle the uncertainty demand 
illustrated more robustness than ordinary deterministic demand. 
In addition, the fluctuation in sensitivity between deterministic 
demand and uncertain demand of network 2 was less than in 
network 3, meaning that network 2 is more robust than the 
other networks. 
 Moreover, we not only locate the optimal facility sites, but 
also allocate the optimal link flows. Results indicate that we 
can improve the best network among the three networks by 
making practical use of routing. According to the above 
comparisons, by considering cost efficiency and model 
robustness, network 2 offers the best outcome when the 
demand becomes uncertain. Consequently, we choose scenario 
3 of this network as a representative to improve such an 
outcome through practical uses of vehicle routing problems. 
We focus on the last hierarchy of the network elements, from 
depots to shelters, and apply it to routing problems. The 
optimized routing network of each opened facility is illustrated 
in Figure 8. There are five depots selected at the optimal 
solutions, and each depot responds to its link flow allocation. 
The routing, which visits more than one shelter in one trip, 
consists instead of a single visit trip when link flows are less 
than truck capacity. We found that the total delivery cost is 
reduced for every opened facility site, by approximately 30 
percent (Table 2).  
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 

(a) Deterministic demand     (b)   Uncertainty demand 
Fig.6 The total delivery cost 
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Fig.7 The model sensitivity analysis of deterministic demand and 
uncertainty demand 
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Table 2 The total delivery cost reduction by using LRP  

 
 
 

6. CONCLUSION AND FUTURE WORKS 
 
 This study contributes to the previous research by 
considering the worst case scenarios of multi-facility location 
problems under uncertain demand. We justify the uncertainty 
on demand by the fact that it is quite difficult to predict post 
disaster demand. Therefore, our study determines the region of 
uncertain demand as an ellipsoid uncertainty set that is suitable 
for our situation where only the uncertainty ranges are known 
and not necessitate the distribution. Moreover, the ellipsoid 

uncertainty set is a novel approach that has never been fully 
applied to solve facility location problems. Accordingly, the 
main objective of the study is to tackle the facility locations and 
allocations with an uncertain demand function, as well as to 
improve the solution by integrating with vehicle routing 
problems. We analyze the three network structures including 
one single-layer facility network and two two-layer facility 
networks with distinct truck sizes (large trucks and small 
trucks). The uncertainty model helps the planner identify 
trade-offs between the inability to recover full costs for excess 
link flow and satisfying the demand. 
 First, the results from our calculation demonstrate that the 
network configurations influence total delivery costs. It can be 
seen clearly that the total delivery cost of network 2 and 
network 3 can reduce because the travel cost reduces, even 
though more facility cost and transshipment cost is required. 
Furthermore, results indicate that the travel cost has more 
significant influence than the facility opening cost. Moreover, 
truck size operation is important when the demand is high 
enough. This study found that large trucks are appropriate to 
deliver both inbound and outbound from the central depots. To 
apply the model, we suggest to establish the central depots and 

Selected opening 
depots 

Location problem of 
echelon 3  

Improved by 
routing

Percentage of 
cost reduction 

Tome and Kurihara 7,027,454 4,163,944 40.75
Kesennuma 6,640,056 3,704,803 44.21
North Ishinomaki 3,903,580 1,766,211 54.75
South Ishinomaki 2,731,894 1,739,353 36.33
South East Ishinomaki 3,124,383 2,587,476 17.18
Sum of echelon 3 23,427,368 13,961,787
Travel cost of echelon 
1 and 2 6,662,229 6,662,229
Opening cost 677,732 677,732
Transhipment cost 1,263,564 1,263,564
Total delivery cost 32,030,892 22,565,312 29.55

 
   
 

 
  
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

Fig.8 The routing operation of network 2, scenario 
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to using large trucks to deliver both inbound and outbound. 
 Furthermore, we show that networks are robust when the 
demand becomes uncertain or unknown. Here, we tested five 
different demand scenarios in each network based on the actual 
number of evacuees during post disaster. After solving for the 
uncertain demand by using robust optimization, the results 
prove that the structural networks have an effect on the model 
robustness. The two hierarchies for facilities provide more 
robustness than the single hierarchy case. Moreover, the 
uncertain demand model is more robust than the deterministic 
demand model. Accordingly, we conclude that the Robust 
Optimization has an advantage in solving uncertain models.  
 In addition, we improve the distribution network by routing 
design. The improved facility location with routing has an 
advantage in saving approximately 30 percent of the total 
delivery cost. Therefore, this study can help the decision maker 
plan for the efficient post disaster distribution network when 
demand turn out to be uncertainty. 
 The historical data was considered an example because of 
the simplicity entailed by the real geography. The model in this 
study represents the majority of demand. Therefore, the 
limitations of this study involve the data analysis and network 
assumptions. The results and findings are rather effects with 
this data. The two layers of facility network and the large truck 
size operation assumptions are probably an advantage when 
they match with the right demand. However, we tested the 
model with five demand scenarios, when they become less and 
high, and results from these assumptions and operations ensure 
that the model responds properly. The model provides the same 
trend of objective values. In addition, according to the model is 
MISOCP thus it is not able to guarantee global optimization. 
However, we use Gurobi solver, which has better 
performance20).     
 Finally, we discuss the interrelated aspects to improve this 
work in the future as follows: (1) we are developing the 
integrated Location-Routing problem (LRP) explained by 
Hamidi et al.21), in which the LRP integrates location, allocation, 
and also routing problems to design the network efficiency; (2) 
we have not considered other parameters that could fluctuate 
during humanitarian logistics, for example supply amount, unit 
transportation cost, facility opening cost, etc. Therefore, not 
only the uncertain demand but also such kind of parameters 
should be considered simultaneously; (3) future work could 
also consider the multi-objective facility location routing 
problem. The model should be more reasonable by 
investigating both cost and time indicators simultaneously. 
Once the uncertainty of demand is incorporated in the model, 
related robustness is evaluated. 
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